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ON AN AXISYMMETRIC BOUNDARY VALUE PROBLEM
FOR AN ELASTIC DIELECTRIC HALF-SPACE
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Department of Mechanical Engineering, The University of Calgary, Calgary, Alberts, Canada
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Abstraci—Hanke! transforms are used to construct a closed-form solution for the axisymmetric boundary
value problem of a pomt charge forced normal to the surface of an isotropic elastic dielectric semi-space.
Exact closed form expressions are obtained for the components of displacement and polarization vectors m
terms of the Bessel functions and the fundamental solutions (1/R), (¢ ™% R), R being the distance from the
source point. The electric potential fields are determined both 1nside and outside the elastic dielectric
semi-space. In the absence of electric polarization effects, the problem reduces to the classical amym-
metric Boussmesq problem of a point force applied normal to the surface of an isotropic elastic semi-apace.
The expressions of the components of displacements derived from this particular case are found to agree
with known results

1. INTRODUCTION

Elastic dielectric materials exhibit linear piezoelectric effects and have become of importance in
modern technology because of their use in the analysis and design of crystal oscillators, filters
and transducers[1]. Classical phenomenological theory of peizoelectricity is concerned with the
interaction between the strain tensor and the electric or polarization vector and is not derivable
as the long wave limit from the modern theories of lattices of electrically polarizable atoms[2],
(as classical elasticity theory can be derived from the Born~von-Karmon theory of monoatomic
lattices of mass points as a long wave limit). This discrepancy in the continuum theory of
classical piczoelectricity has recently been observed by Mindlin[3] and eliminated by adding to
the stored energy of deformation and polarization a functional dependence on the polarization
gradient. The new mathematical theory has interesting novel properties and amongst others, it
predicts the existence of surface energy of deformation and polarization which has been
measured in the Iaboratory[4] and calculated on the basis of atomic considerations{5].

Due to the nature of the equations of equilibrium very few boundary value problems have
been solved within the framework of Mindlin's theory. The authors[6] used the method of
images and Hankel transforms to study the problem of a point charge placed at a finite distance
beneath its surface. Schwartz[7] constructed Papkovitch functions for Mindlin's theory analo-
gous to those of classical elasticity and used these to solve the problem of a concentrated force
in an infinite elastic dielectric continuum. A singular integral formulation of the boundary value
problems was established by the authors{8] using the discontinuity theorems of single and
double layer potentials.

In this paper, the axisymmetric boundary value problem of a point charge forced normal to
the surface of an elastic dielectric semi-space is solved by the method of Hanke! transforms.
Exact closed form solutions are constructed for the components of the displacement and
polarization vectors in terms of the Bessel functions and the fundamental solutions 1/R and
(¢™™%/R), R being the distance from the source point. The potential fields are determined both
inside and outside the elastic dielectric semi-space. For the case when the electric effects are
absent the problem is reduced to the classical Boussinesq problem of a point force applied
normal to the surface of an isotropic semispace and the components of the displacement vector
derived are found to agree with known results[9].

2 BASIC EQUATIONS
For a homogeneous isotropic elastic dielectric semi-space, referred to an axisymmetric
cylindrical polar coordinate system (r, 8, z), the components of the displacement vector u, the

polarization vector P and the potential field ¢ assume the form (u, 0, &,), (P, 0, P,) and &(r, 2),
respectively.
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The equations of equilibrium are given by

[227? if;:r %]”“%TJ’(C c‘“)aaz [_?_+:a‘31:
1 RILE PR T @
(c-cad [Fpee i e cu St e e B
rta-d [Tt B [ B a5,

(2.2)

3 u, 1 ou, u,] au, [52}’
d['a;r*‘ra, 1 = ad d“)araz

l&P P, * * _i&  _ o
e —rg]+b o7 He-b )31'32 ar P, =-E @3

2 2

0raz r oz 8 rar a
L), o [ 28 L2R1), 2
b~ bt)[araz r&z]“’ Frraltt e
9 _ o _go
az aPZ EZ (2-4)
P 1, 9P 128,24)__,
ar+rp’+ 3z ‘“[’a‘} rar )" P in R @3
V4, =0, in R 2.6)

where ¢, is the electric potential in the exterior vacuum R’ and where f=(f,o0,f;), E=
(E, o, E,) and p, are body force vector, the electric force vector and the volume charge,
respectively, and by, by, €12, Cu» diz, du are dielectric constants with

X=X+ 2xulx=b,c.d), b*=by+ by Q.7
Components of the stress tensor and the electric tensor are given by [6]
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The problem

Let the plane z = o0 of the cylindrical polar coordinate system coincide with the surface of
the elastic dielectric semi-space with the positive direction of the axis of symmetry r=o,
pointing towards its interior.

For the axisymmetric boundary value problem of elastic dielectric semi-space subjected to a
charged pin normal to its surface, we shall determine ., w, P, P, ¢, ¢, satisfying eqns
(2.1)(2.6) and the boundary conditions

Turo)=N&D, T,(r, 0)=0 2.19)

Py(r,0)=0, P(r,0)=0 (2.20)

8(1,0)= 4,(r, o) lim [P,—eo 3;‘?+—*—¢)] - o F&2 @21)

where 8(r) is the Dirac delta function and N and F are constants.

As has been pointed out in [10] the above set of boundary conditions permits latitude in
specification of boundary conditions in the sense that the polarization, P, or the potential, ¢,
together with their derivatives may be prescribed on the boundary of the region.

3. SOLUTION BY HANKEL TRANSFORMS

In this section, we use Hanke! transforms to transform the homogeneous partial differential
equations system (2.1)(2.6) and the boundary conditions (2.19)-(2.21) to a system of ordinary
differential equations with constant coefficients to which the solution is obtained.

Let

0.6, P6 2= [ P, Par .1

{u,(£ 2), P,(£ 2), (£ 2), Bo(& 2)} = I ) rJ,(ér)x{u, P, ¢, ¢} dr G.2)

Applying [= rJi(¢r) to eqn (2.1), (2.3) and [, rJ,(¢r) to eqns (2.4)~(2.6), we obtain the following
transformed system of equations

[cuD? - c€la, — (¢ — cu)€Du, + [dyD? ~ dE*IP, — (d — du)¢DP, = 0 (3.3)
(€~ cu)eDu, + [cD? = couf*lu, +(d — d)EDP, + [dD? — dy£P, = 0 (34)
[duD? - d'lu, + [d — du)éDu, + [b* D — b§* - a]P, — (b — b*)EDP, + &b = 0 (3.5
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(d — d)¢Du, + [dD? — dy &, + (b — b*)¢DP, + (bD*— b* & — alP, - D = 0 (3.6)

P, +DP,—¢,(DP-E)p=0, nR (37
(-8, =0, inR (38)

where D= 4 and we have used the resuits

dz
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The solution of the transformed homogeneous system of eqns (3.3)-(3.8) is given by
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where A,(i = 1 —6) are arbitrary functions of ¢ to be determined from the boundary conditions
2.192.21), (2= +m? (i=1,2) and m? are given by

3 _ c(l +¢€a) 1 dCy
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The expressions for some of the transformed components of stress and electric tensors are
given by
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319

Tzr(fs Z) == ZCMEAI e-fz —25{2aa"d“£1+ C“(C
~ = Cub?)lAre @ + 2cué(c — ¢ — cubZlAse ¥ + 2afl Ase ™ (3.20)

E, (£ 2) =~ 2dutA e ¥ - 2{2bya"'a + a + ducu
— duC — cub2lAre7% + 2 + duCu~ duc — CuézlAs e

+[ce;'(1+ €,a)+2BE)Ae ™7 +2m ¢, Ase ¥ + b, %{2 3.21)



On an axisymmetric boundary value probiem 267
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a= Cdu b dC“, B = Cb“ - ddu (3.24)
my = di— bucCu. 3.25

The boundary conditions eqns (2.19)-(2.21) lead to the following system of six algebraic
equations

— CauAy = (Qaa  duf + cCu)Ar + cCuhy + al Ay =0 (3.26)
-c“A,-(2aa"d“§2+c§4)A2+C§A3+a§44=% 3.2
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2007 Ay - cli A+ CutAs=0 (3.29)

2atA;+ ce;'Ag= Ag (3.30)

2a8As+ ceF 1A= EAg+ F. (331

The solution of the above system of equations is obtained and is given in Appendix A.

The transformed components of the displacement and polarization vectors and the potential
fields are given by
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4 THE SOLUTION AND THE PARTICULAR CASE

The inverse Hankel transforms of order 1 and 0 corresponding to egns (3.1), (3.2) are defined
as

(w2, B 2= [ ghentun Py de @1
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Muitiplying the eqns (3.32), (3.34) by [ ¢/i(ér); eqns (3.33), (3.35) and (3.37) by J; &J,(ér),
integrating with respect to £ and using the formulae given in Appendix B, we obtain
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where A(* m,) are the differential operators defined by
AEmy=rem? (=12
=m, :9_27 - ’ )

J(m,), (i =1, 2) are integrals given by (B9) in Appendex B and R = V(7 + 7%), is the distance
from the source point.
The mechanical and the electrical stresses are determined from eqns (2.8)-(2.18).

The particular case

The solution to the classical Boussinesq problem of a concentrated point force applied
normal to the surface of an isotropic elastic semi-space can be derived by neglecting the electric
effects. Setting

F=0, da=dy=d=0, a=0 4.12)
one finds that
P(r,2)=P,(r,2)= ¢(r,2) = ¢,(r,2)=0 4.13)

and the residual expressions for the displacement vector components are obtained as

u,(r,2) =m-5N_—c4—‘—j : [c“ —(Cu—cC)z— az](l _%) 4.14)
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e N[ c 3 (i) 415
u(r, ) = 2C44[C—C44 zaz]R 1

which with minor change in notation (¢j» = A, ¢y = u. ¢ = A +2u, N = — (P[27)) agree with the
known results (9]
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APPENDIX A
The solution of the algebraic system of eqns (3 26}~(3 31) 1s found and 1s given by
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APPENDIX B
Some useful integrals for mverse Hankel transforms
(a) Integrals mvolving J,(ér)
* " (1
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(b) Integrals involving J,(¢7)
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